
Case Study –
Meet App

Isabel Matula



Overview
Objective

The aim of the project was 
to develop a serverless, 
progressive web 
application (PWA) with 
React using a
test-driven development 
(TDD) technique. 

Tools

This project utilized React 
and JavaScript for app 
development, integrating 
Recharts for data 
visualization, and Google 
Calendar API for event 
retrieval and OAuth2 for 
authentication.

Purpose & Context

Over the past few years, 
Serverless and PWAs have 
become increasingly popular 
in web development. By 
combining these two 
concepts, the app can 
function like a regular web 
application while also 
enjoying the advantages of 
both serverless architecture 
and PWAs.

Duration

The project was completed 
within a timeframe of one 
and a half months. 



User Stories
• As a user, I should be able to filter events by city, so that I 

can see a list of events taking place in that city.

• As a user, I should be able to show and hide event 
details, so that that I can get more details on an event 
only when needed.

• As a user, I should be able to specify the number of 
events displayed, so that I can decide how many I want 
to see at once.

• As a user, I should be able to use the application when I 
am offline, so that so I can use the app even when I don’t 
have an internet connection.

• As a user, I should be able to add shortcut for the app to 
my home screen, so that so I can easily navigate to the 
app whenever I open my browser.

• As a user, I should be able to see charts visualizing event 
details, so that I can quickly see what kind of events there 
are and where.



Unit & Integration Testing

Unit Testing
For testing my Meet App, I used Jest, which is 
included with create-react-app, for unit testing. I 
wrote test cases to verify individual components 
and grouped similar tests into test suites. React 
Testing Library, also bundled with create-react-
app, provided necessary functions for testing 
React components. Running npm test allowed 
me to execute all test suites and get immediate 
feedback. This approach ensured each 
component functioned correctly and 
independently.

Integration Testing
I also used Jest for integration testing, focusing 
on component and data dependencies. I tested 
parent-child interactions to ensure data and 
function props were correctly handled. 
Additionally, I verified that components could 
fetch and render data from the Google Calendar 
API. These integration tests ensured seamless 
component interactions and reliable data 
handling. This approach improved the stability 
and robustness of the application.



User Acceptance & End-to-
End Testing

User Acceptance Testing
I performed User Acceptance Testing using a 
behavior-driven development (BDD) approach 
with jest-cucumber. I wrote feature tests in 
Gherkin's "Given, When, Then" syntax, stored in 
.feature files within a dedicated "features" folder. 
These tests ensured the application's features 
met stakeholder expectations and were easily 
understandable by non-developers. Each feature 
had corresponding step definition files in 
JavaScript that connected the Gherkin scenarios 
to the actual test code. This method allowed me 
to verify the functionality of the application from 
an end-user perspective.

End-to-End Testing
I performed User End-to-End Testing (E2E) using 
Puppeteer with Jest to ensure the application 
functioned correctly from the user's perspective. 
Puppeteer simulated user interactions, such as 
typing in search queries, setting limits on results, 
and clicking buttons. I wrote tests that opened 
the Chromium browser, navigated to the locally 
hosted app, and interacted with UI elements. By 
running these tests, I was able to verify that the 
application performed as expected, ensuring a 
seamless user experience. This testing approach 
confirmed the app's reliability and usability.



Performance Monitoring
I performed Performance Monitoring using Atatus to ensure 
the application functioned well under real-world 
conditions. I integrated Atatus by installing the atatus-spa 
package and configuring it in the application's index.js file. 
Atatus captured data on page load times, errors, and user 
interactions. I tested the setup by generating a test error 
and confirmed the integration through the Atatus 
dashboard. This allowed me to track the app's 
performance, identifying slow pages and frequent errors, 
ensuring a positive user experience by proactively 
addressing any issues.



Data Visualization
I used the Recharts library to create a scatter 
chart that visualized the number of events in 
various cities worldwide. I explored Recharts' 
capabilities, set up the ScatterChart, and 
formatted the data to count events per city. 
The chart was customized for readability and 
responsiveness, handling label overlap. I also 
implemented a pie chart to display event 
genres, applying customized labels for better 
clarity. Both charts were integrated into a grid 
layout for a responsive design. Finally, I 
deployed the updated app and verified its 
functionality in the browser.

7



Conclusion
The goal of developing a serverless, progressive web 
application with React using a test-driven 
development technique was successfully achieved. 
The final product allows users to filter events by city, 
show and hide event details, specify the number of 
events displayed, use the app offline, add the app to 
their home screen, and view charts visualizing event 
details. Integrating Recharts for data visualization 
and the Google Calendar API for event retrieval and 
OAuth2 authentication posed significant challenges, 
particularly in ensuring seamless functionality and 
data security. Despite these hurdles, the app's 
development, which included extensive unit testing, 
integration testing, user acceptance testing, and end-
to-end testing, was rewarding. Moving forward, I 
would focus even more on enhancing user 
experience. Overall, this project highlighted the 
importance of comprehensive testing in web 
development.


	Case Study – �Meet App
	Overview
	User Stories
	Unit & Integration Testing
	User Acceptance & End-to-End Testing
	Performance Monitoring
	Data Visualization
	Conclusion

